Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Vet Clin North Am Food Anim Pract ; 39(1): 129-140, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2320302

ABSTRACT

Laboratory testing is one part of clinical diagnosis, and quick and reliable testing results provide important data to support treatment decision and develop control strategies. Clinical viral testing has been shifting from traditional virus isolation and electron microscopy to molecular polymerase chain reaction and point-of-care antigen tests. This shift in diagnostic methodology also means change from looking for infectious virions or viral particles to hunting viral antigens and genomes. With technological development, it is predicted that metagenomic sequencing will be commonly used in veterinary clinical diagnosis for unveiling the whole picture of microbes involved in diseases in the future.


Subject(s)
Laboratories , Animals , Polymerase Chain Reaction/veterinary
2.
Cell Host Microbe ; 30(11): 1512-1517.e4, 2022 11 09.
Article in English | MEDLINE | ID: covidwho-2118001

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariant BA.2.75 emerged recently and appears to be spreading. It has nine mutations in spike compared with the currently circulating BA.2, raising concerns that it may further evade vaccine-elicited and therapeutic antibodies. We found BA.2.75 to be moderately more neutralization resistant to sera from vaccinated/boosted individuals than BA.2 (1.8-fold), similar to BA.2.12.1 (1.1-fold), but more neutralization sensitive than BA.4/5 (0.6-fold). Relative to BA.2, BA.2.75 showed heightened resistance to class 1 and class 3 monoclonal antibodies targeting the spike-receptor-binding domain while gaining sensitivity to class 2 antibodies. Resistance was largely conferred by G446S and R460K mutations. BA.2.75 was slightly resistant (3.7-fold) to bebtelovimab, a therapeutic antibody with potent activity against all Omicron subvariants. BA.2.75 also exhibited a higher binding affinity to host receptor ACE2 than other Omicron subvariants. BA.2.75 provides further insight into SARS-CoV-2 evolution as it gains transmissibility while incrementally evading antibody neutralization.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Neutralization Tests , Antibodies, Monoclonal , Antibodies, Viral , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Neutralizing
3.
Emerg Infect Dis ; 28(6): 1274-1275, 2022 06.
Article in English | MEDLINE | ID: covidwho-1771003

ABSTRACT

The SARS-CoV-2 Omicron variant BA.2 sublineage is rapidly replacing earlier Omicron lineages, suggesting BA.2 has increased vaccine evasion properties. We measured neutralization titers of authentic BA.1 and BA.2 isolates in serum samples from persons who received the BNT162b2 booster vaccine. All samples neutralized BA.1 and BA.2 at equal median values.


Subject(s)
COVID-19 , SARS-CoV-2 , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Vaccination
4.
Vet Microbiol ; 268: 109395, 2022 May.
Article in English | MEDLINE | ID: covidwho-1735038

ABSTRACT

SARS-CoV-2 has exhibited varying pathogenesis in a variety of Mammalia family's including Canidae, Mustelidae, Hominidae, Cervidae, Hyaenidae, and Felidae. Novel SARS-CoV-2 variants characterized by spike protein mutations have recently resulted in clinical and epidemiological concerns, as they potentially have increased infectious rates, increased transmission, or reduced neutralization by antibodies produced via vaccination. Many variants have been identified at this time, but the variant of continuing concern has been the Delta variant (B.1.617.2), due to its increased transmissibility and infectious rate. Felines vaccinated using an experimental SARS-CoV-2 spike protein-based veterinary vaccine mounted a robust immune response to the SARS-CoV-2 spike protein. Using a reporter virus particle system and feline serum, we have verified that vaccinated felines produce antibodies that neutralize the SARS-CoV-2 Wuhan strain and variant B.1.617.2 at comparable levels.


Subject(s)
COVID-19 , Cat Diseases , Felidae , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19/veterinary , COVID-19 Vaccines , Cats , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
5.
mBio ; 11(3)2020 05 22.
Article in English | MEDLINE | ID: covidwho-1723548

ABSTRACT

Due to the urgent need of a therapeutic treatment for coronavirus (CoV) disease 2019 (COVID-19) patients, a number of FDA-approved/repurposed drugs have been suggested as antiviral candidates at clinics, without sufficient information. Furthermore, there have been extensive debates over antiviral candidates for their effectiveness and safety against severe acute respiratory syndrome CoV 2 (SARS-CoV-2), suggesting that rapid preclinical animal studies are required to identify potential antiviral candidates for human trials. To this end, the antiviral efficacies of lopinavir-ritonavir, hydroxychloroquine sulfate, and emtricitabine-tenofovir for SARS-CoV-2 infection were assessed in the ferret infection model. While the lopinavir-ritonavir-, hydroxychloroquine sulfate-, or emtricitabine-tenofovir-treated group exhibited lower overall clinical scores than the phosphate-buffered saline (PBS)-treated control group, the virus titers in nasal washes, stool specimens, and respiratory tissues were similar between all three antiviral-candidate-treated groups and the PBS-treated control group. Only the emtricitabine-tenofovir-treated group showed lower virus titers in nasal washes at 8 days postinfection (dpi) than the PBS-treated control group. To further explore the effect of immune suppression on viral infection and clinical outcome, ferrets were treated with azathioprine, an immunosuppressive drug. Compared to the PBS-treated control group, azathioprine-immunosuppressed ferrets exhibited a longer period of clinical illness, higher virus titers in nasal turbinate, delayed virus clearance, and significantly lower serum neutralization (SN) antibody titers. Taken together, all antiviral drugs tested marginally reduced the overall clinical scores of infected ferrets but did not significantly affect in vivo virus titers. Despite the potential discrepancy of drug efficacies between animals and humans, these preclinical ferret data should be highly informative to future therapeutic treatment of COVID-19 patients.IMPORTANCE The SARS-CoV-2 pandemic continues to spread worldwide, with rapidly increasing numbers of mortalities, placing increasing strain on health care systems. Despite serious public health concerns, no effective vaccines or therapeutics have been approved by regulatory agencies. In this study, we tested the FDA-approved drugs lopinavir-ritonavir, hydroxychloroquine sulfate, and emtricitabine-tenofovir against SARS-CoV-2 infection in a highly susceptible ferret infection model. While most of the drug treatments marginally reduced clinical symptoms, they did not reduce virus titers, with the exception of emtricitabine-tenofovir treatment, which led to diminished virus titers in nasal washes at 8 dpi. Further, the azathioprine-treated immunosuppressed ferrets showed delayed virus clearance and low SN titers, resulting in a prolonged infection. As several FDA-approved or repurposed drugs are being tested as antiviral candidates at clinics without sufficient information, rapid preclinical animal studies should proceed to identify therapeutic drug candidates with strong antiviral potential and high safety prior to a human efficacy trial.


Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antiviral Agents/pharmacology , Betacoronavirus/immunology , COVID-19 , Coronavirus Infections/virology , Disease Models, Animal , Female , Ferrets , Humans , Hydroxychloroquine/therapeutic use , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , United States , United States Food and Drug Administration , Viral Load
6.
Viruses ; 13(6)2021 06 12.
Article in English | MEDLINE | ID: covidwho-1270124

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 has posed a global threat to human lives and economics. One of the best ways to determine protection against the infection is to quantify the neutralizing activity of serum antibodies. Multiple assays have been developed to validate SARS-CoV-2 neutralization; most of them utilized lentiviral or vesicular stomatitis virus-based particles pseudotyped with the spike (S) protein, making them safe and acceptable to work with in many labs. However, these systems are only capable of measuring infection with purified particles. This study has developed a pseudoviral assay with replication-dependent reporter vectors that can accurately quantify the level of infection directly from the virus producing cell to the permissive target cell. Comparative analysis of cell-free and cell-to-cell infection revealed that the neutralizing activity of convalescent sera was more than tenfold lower in cell cocultures than in the cell-free mode of infection. As the pseudoviral system could not properly model the mechanisms of SARS-CoV-2 transmission, similar experiments were performed with replication-competent coronavirus, which detected nearly complete SARS-CoV-2 cell-to-cell infection resistance to neutralization by convalescent sera. These findings suggest that the cell-to-cell mode of SARS-CoV-2 transmission, for which the mechanisms are largely unknown, could be of great importance for treatment and prevention of COVID-19.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Convalescence , Neutralization Tests/methods , SARS-CoV-2/immunology , Genes, Reporter/genetics , HEK293 Cells , Humans , Neutralization Tests/standards , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL